

Ziegelei 1 D-72336 Balingen

E-Mail: info@kern-sohn.com

Tel: +49-[0]7433- 9933-0 Fax: +49-[0]7433-9933-149 Internet: www.kern-sohn.com

Reference manual KERN Communications Protocol (KCP)

KERN KCP

KCP versions: 1.1.0 Manual version 1.2 (2017-04) GB

KCP-ZB-e-1712

KERN KCP

Manual version 1.2

Reference manual

KERN Communications Protocol (KCP)

Table of contents

1	BRIEF OUTLINE	3
1.1	Default interface communication parameters	3
1.2	Basic command and response format	. 3
1.3	Language conventions	3
1.4	Overview of basic commands	4
2	GENERAL	5
2.1	KCP Version	5
2.2	KCP Command Levels	5
2.3	Conventions in this manual	5
2.4	Conventions in this manual Default communication parameters 2.4.1 RS-232 / RS-485	5
2.4 2.5	Default communication parameters	5 6 6 6 6
2.4 2.5	Default communication parameters 2.4.1 RS-232 / RS-485 Protocol structure 2.5.1 Encoding 2.5.2 Commands 2.5.3 Responses 2.5.4 Examples KCP COMMANDS - LEVEL 0 (CORE COMMANDS)	5 6 6 6 6 6 7
2.4 2.5 2 2 2 2	Default communication parameters 2.4.1 RS-232 / RS-485 Protocol structure 2.5.1 Encoding 2.5.2 Commands 2.5.3 Responses 2.5.4 Examples	5 6 6 6 6 6 7 20

1 Brief outline

The KERN Communications Protocol (KCP) is a standardized interface command set for KERN balances and other instruments, which allows retrieving and controlling all relevant functions and functions of the device. KERN instruments featuring KCP are thus easily integrated with computers, industrial controllers and other digital systems.

This section gives an overview over the general command and response structure and lists the few basic commands required to handle the vast majority of applications.

1.1 Default interface communication parameters

By default, each KCP device comes preset to the following communication parameters. The applicable parameters depend on the type of communication interface:

Interfaces	Parameters			
RS-232 / RS-485 / Bluetooth SPP	Baud rate:	9600 baud/s	Data bits:	8 bits
	Parity:	none	Stop bits:	1 bit

1.2 Basic command and response format

KCP is based on simple ASCII-encoded text commands and responses. Every interaction consists of a command, possibly with arguments separated by spaces (symbol _) and terminated by Windows-style newline characters (< CR > < LF >):

Command			A	rgur	nents	Termi	inator
<cmd></cmd>	C	<arg1></arg1>	<arg2></arg2>	J	<arg3></arg3>	 < <i>CR</i> >	<lf></lf>

Correctly formatted commands are answered with a response containing the requested data including or following a confirmation of the following form:

Response		Status	Data	Terminator		
<cmd></cmd>	L	A = accepted / acknowledge L = logical error / invalid parameter I = internal / technical error	ſ	command specific	<cr></cr>	<lf></lf>
ES		Erroneous syntax or unknown comma	<cr></cr>	<lf></lf>		

Example: Command "Set indication unit to grams (g)" with response "accepted"

C	Command:	U		g	<cr></cr>	< <i>LF</i> >	_	Response:	U		Α	<cr></cr>	< <i>LF</i> >
	dec:	85	32	103	13	10	→	dec:	85	32	65	13	10
	hex:	55	20	67	0D	0A		hex:	55	20	41	0D	0A

Example: Command "Set indication unit to invalid unit" with response "logical error"

Command:	U		Х	<cr></cr>	<lf></lf>	_	Response:	U	u	L	<cr></cr>	< <i>LF</i> >
dec:	85	32	88	13	10	→	dec:	85	32	76	13	10
hex:	55	20	58	0D	0A		hex:	55	20	4C	0D	0A

Example: Invalid command

Command:	U		g	<cr></cr>	< <i>LF</i> >	_	Response:	ES	<cr></cr>
dec:	85	32	103	13	10	→	dec:	69 83	13
hex:	55	20	67	0D	0A		hex:	45 53	0D

1.3 Language conventions

Throughout this manual, the following conventions are used for command and response syntax:

	Space symbol (dec 32, hex 20)
↓	Commands sent to the balance / measurement device.
↑	Responses of the balance / measurement device

<LF>

10

0A

1.4 Overview of basic commands

	in the host unit (by defa	tion (weighing or measured value) ault the current indication unit). Ifills the "stable" condition or until configured timeout is reached.
\bullet	S	
↑	S_S100.00_g	Indication value is right aligned, 10 characters.
	S_S100.00_g	Decimal sign is a point. The minus sign immediately precedes the nu-
	S.S. 1152.05 kg	merical value – without leading zero.
		On multi-range devices, hidden trailing decimals are shown as spaces.
		Status "S" = current indication is stable
		Status "D" = current indication is unstable / dynamic
	S_I	In menu, currently executing another command or timeout reached.
	S_+ or S	Overload or underload

		idication in the host unit (by default the current indication unit) current indication without waiting for stable conditions.
¥	SI	
◆	SI_S100.00_g SI_D99.98_g	see description of command "S"
	SI_I	In menu, currently executing another command or timeout reached.
	SI_+ or S	Overload or underload

	Zero indication	Tare indication	
¥	Z	Т	
1	Z_A	T_A	Zeroing/taring successful.
	Z_I	T_I	In menu, currently executing another command or timeout reached.
	Z_+ or Z	T_+ or T	Overload or underload; or zero range exceeded

	Query or set display and host unit								
1	U	Query current display unit							
1	U_A_ <unit></unit>	Current display unit is <i><unit></unit></i>							
¥	U_ <unit></unit>	Set current display and host unit. Units: g,kg,mg, lb,pcs,%, N,kN,TF,KLBF,							
↑	U_A	Unit successfully set							
	U_I	Invalid unit.							

	Set mode of indication (Peak or track mode)						
♦	SIM	Query current mode of indication					
↑	SIM_A_ <mode></mode>	Current mode of indication is <mode></mode>					
→	SIM_ <mode></mode>	Set current mode of indication and reset the current peak value. <mode> is one of the following:• T = Track mode (indicate the current measurand)• P = Peak mode (only indicate the largest value +/-)• P+ = Peak positive mode (only indicate the largest pos. value)• P- = Peak negative mode (only indicate the largest neg. value)</mode>					
✦	SIM_A	Mode successfully set, current peak value is zero.					
	SIM_I	Invalid <mode></mode>					

	Read measurement memory / reports Sends all available recorded data in a unspecified tabular form (separated by spaces)							
$\mathbf{+}$	SMEM							
↑	SMEM_A_START	Command understood, next lines will be the data in tabular form						
	<header line=""></header>	Number Date Time Mode Indication						
	<data 1="" line=""></data>	1 2016-01-13 12:34:56 T 12.3456 N						
	<data 2="" line=""></data>	2 2016-02-22 12:37:15 P+ 12.3456 kN						
	<data 3="" line=""></data>	3 2016-03-31 12:39:41 P1234.56 N						
	SMEM A END	End of data						

2 General

2.1 KCP Version

The KCP protocol is continuously being improved. With each new version, the KCP protocol version number is incremented. The number of the KCP version implemented in your particular device can be requested using the **I1** command.

Please make sure that you use the correct version of the KCP manual description (this document) for your device. If a command is only available in certain KCP versions, this will be mentioned in the section of the respective command.

2.2 KCP Command Levels

The KCP protocol commands are grouped in multiple levels. While Level 0 and Level 1 are available for all KCP devices, other levels may only be available with certain devices. Please refer to the individual chapter of each level for further details.

It is advised that you try to limit yourself to the lowest level of commands, that you can achieve your goals with. This allows you to connect a larger variety of KCP devices to your software without modifications.

2.3 Conventions in this manual

Throughout this manual, the following conventions are used for command and response syntax:

	Space symbol (dec 32, hex 20)				
+	Commands sent to the balance / measurement device.				
^	↑ Responses of the balance / measurement device				
«param»	Parameter name, the brackets (« and ») are not to be sent				
[]	Optional parameter / expression				

2.4 Default communication parameters

By default, each KCP device comes preset to certain communication parameters. The applicable parameters depend on the type of communication interface and are listed in the following paragraphs.

2.4.1 RS-232 / RS-485

Baud rate: 9600 baud/s

Data bits: 8 bits

Parity: none

Stop bits: 1 bit

2.5 Protocol structure

KCP is based on simple ASCII-encoded text commands and responses.

2.5.1 Encoding

All characters and digits are encoded in ASCII - if not specified otherwise.

2.5.2 Commands

Every interaction consists of a command, possibly with arguments separated by spaces (symbol _) and terminated by Windows-style newline characters (< CR > < LF >):

Command			Arguments						
<cmd></cmd>	1	<arg1></arg1>		<arg2></arg2>	L	<arg3></arg3>		< <i>CR</i> >	<lf></lf>

Commands should only be sent in uppercase letters.

2.5.3 Responses

Correctly formatted commands are answered with a response containing the requested data including or following a confirmation of the following form:

Response		Status		Data	Termi	inator
<cmd></cmd>	L	A = accepted / acknowledge L = logical error / invalid parameter I = internal / technical error	L	command specific	<cr></cr>	<lf></lf>
ES		Erroneous syntax or unknown comma		<cr></cr>	<lf></lf>	

For commands that only execute actions on the device and do not return information required in your application, you can ignore the responses. However, to increase the reliability of your software, it is a good practice to read and evaluate the responses and act accordingly upon errors.

2.5.4 Examples

The following examples show some very basic interactions using the KCP protocol.

Example: Command "Set indication unit to grams (g)" with response "accepted"

Command:	U		g	<cr></cr>	< <i>LF</i> >	_	Response:	U		Α	<cr></cr>	<lf></lf>
dec:	85	32	103	13	10	→	dec:	85	32	65	13	10
hex:	55	20	67	0D	0A		hex:	55	20	41	0D	0A

Example: Command "Set indication unit to invalid unit" with response "logical error"

Command:	U		Х	<cr></cr>	< <i>LF</i> >
dec:	85	32	88	13	10
hex:	55	20	58	0D	0A

_	Response:	U		L	<cr></cr>	< <i>LF</i> >
→	dec:	85	32	76	13	10
	hex:	55	20	4C	0D	0A

Example: Invalid command

Command:	U		g	<cr></cr>	< <i>LF</i> >	_	Response:	ES	<cr></cr>	<lf></lf>
dec:	85	32	103	13	10	→	dec:	69 83	13	10
hex:	55	20	67	0D	0A		hex:	45 53	0D	0A

3 KCP commands - Level 0 (core commands)

The commands from Level 0 offer the very basic functions available for every KCP device.

- e Cancel
- 10 List all implemented KCP commands
- 11 Query KCP level and KCP versions
- **12** Query device information (type, capacity)
- 13 Query device software version
- 14 Query serial number
- **15** Query SW-Identification number
- s Send stable indication (weight value / measured value)
- si Send current indication immediately
- SIR Send current indication immediately and repeat
- z Zero
- zi Zero immediately

Syntax

Command

Q	Resets the device to the condition found after
	switching on, but without a zero setting being per- formed.

Responses

I4_A_"«SNR»"	Serial number is emitted; the device is ready for
	operation.

Comments

- All commands awaiting responses are cancelled.
- If the device is on standby, it is switched on.
- The cancel command is always executed.
- The emitted serial number corresponds to the serial number of the terminal (if one is present), see [I4].

Examples

$\mathbf{\Lambda}$	<u>و</u>	Cancel
↑	I4_A_″B021002593″	Device is "reset", its serial number is B021002593

See also

➔ I4 – Query seria	l number
--------------------	----------

English

The **IO** command lists all commands implemented in the present software.

All level 0 commands are listed in alphabetical order before all commands of level 1 etc.

Syntax

Command

ΙO	Send list of all implemented KCP commands.

Responses

I0_B_«Level»_"«Command»"	1st command implemented.
I0_B_«Level»_"«Command»"	2nd (next) command implemented.
I0_B	
I0_A_«Level»_"«Command»"	Last command implemented.
IO_I	Command understood but currently not executable (device is currently executing another command).

Parameters / Return values

Name	Туре	Values	Meaning
Level	integer	Number of t	he KCP level where the command belongs to:
		0	KCP level 0
		1	KCP level 1
		2	KCP level 2
Command	string		KCP command

Comments

- If a terminal and a weigh module, weighing platform are being used, the command list of the terminal is output. If only a weigh module, platform is being used, the command list of the weigh module, platform is shown.
- If **IO** lists commands that cannot be found in the manual, these are reserved commands "for internal use" or "for future use", and should not be used or altered in any way.

Examples

$\mathbf{+}$	IO	Send list of commands
↑	I0_B_0_″I0″	Level 0 command 10 implemented
↑	I0_B	
↑	I0_B_0_″@″	Level 0 command @ (cancel) implemented
↑	I0_B_1_″D″	Level 0 command p implemented
↑	I0_B	
↑	IO_A_3_"SM4"	Level 3 command SM4 implemented

See also

→	e - cancel	
---	------------	--

Query KCP level and versions.

Syntax

Command

I1	Query KCP level and KCP versions.

Responses

I1_A_"«Level»"_"«V0»"_"«V1»"_"«V2»" _"«V3»"	Current KCP level and KCP versions
I1_I	Command understood but currently not executable

Parameters / Return values

Name	Туре	Values	Meaning
Level	string	0	KCP level 0
	_	01	KCP level 0 and 1
		03	KCP level 0 and 3
		013	KCP level 0, 1 and 3
V0V3	string		KCP versions of the related level (0 to 3)

Examples

¥	I1	Query the current KCP level and version
1	I1_A_"123"_"2.00"_"2.20"_"1.00"	Level 0-3 is implemented and the according
	_″1.50″	version numbers are shown

Use **12** to query information about the device (e.g. type and weighing capacity). The response is output as a whole string.

Syntax

Command

I2	Query of the device .

Responses

I2_A_"«Type»_«Capacity»_«Unit»"	Device/instrument type and capacity.
I2_I	Command understood but currently not executable (device is currently executing another command, e.g. taring).

Parameters / Return values

Name	Туре	Values	Meaning	
Туре	string		Type of device / instrument	
Capacity	string		Capacity of device / instrument	
Unit	string		Weight unit	

Comments

- With multi-range devices, the last decimal place is available only in the finer ranges.
- The number of characters of "text" depends on the device type and capacity.

↓	I2	Query of the device data
1	I2_A_"GAT_6K-4_6000.00_g"	Device type and capacity

Provides the device software version.

Syntax

Command

13	Query of the device software version.

Responses

I3_A_"«Software»_«TNR»"	Device software version and type number.
I3_I	Command understood but currently not executable (device is currently executing another command, e.g. taring).

Parameters / Return values

Name	Туре	Values	Meaning
Software	string		Software (Firmware) version
TNR	string		Type number

Comments

- Only the software version of the terminal software is issued.
- If no terminal is present, the bridge software is issued instead.

¥	13	Query of the Software version number(s) and type definition number
↑	I3_A_"4.10_10.142″	4 .10: Software version number
		10.142: Type number

14 – Query serial number

Description

Use **I4** to query the serial number of the device. In the case of devices, the serial number of the terminal is output.

Syntax

Command

I4	Querv of the serial number.

Responses

I4_A_"«SNR»"	Serial number.
	Command not understood, not executable at present Command understood but currently not executable (device is currently executing another command, e.g.
	initial zero setting).

Parameters / Return values

Name	Туре	Values	Meaning
SNR	string		Serial number

Comments

- The serial number agrees with that on the model plate and is different for every device.
- The serial number can be used, for example, as a device address in a network solution.
- The device response to 14 appears unsolicited after switching on and after the cancel command @.
- Only the serial number of the terminal is issued.
- If no terminal is present, the serial number of the bridge is issued instead.

Examples

$\mathbf{\Lambda}$	I4	Query of serial number
1	I4_A_"WX1712345"	The serial number is: WX1712345

See also

→	e - cancel
---	------------

15 – Query SW-Identification number

Description

Use 15 to query the software identification number.

Syntax

Command

15	Query of the SW-identification number.

Responses

I5_A_"«SWID»"	SW-Identification number with index.
I5_I	Command understood but currently not executable (device is currently executing another command, e.g. taring).

Parameters / Return values

Name	Туре	Values	Meaning
SWID	string		SW-Identification number with index.

Comments

- The SW-Identification number is unique for every software. It consists of an 8 digit number and an alphabetic character as an index.
- Only the software identification number of the terminal is issued.
- If no terminal is present, the software identification number of the bridge is issued instead.

$\mathbf{+}$	I5	Query of the SW-identification number
1	I5_A_"V1.02"	V1.02: SW-identification number with index

Use **s** to send a stable weight value, along with the unit.

Syntax

Command

S	Send the current stable net weight value.

Responses

S_S_«WeightValue»_«Unit»	Current stable weight value in unit set.
S_I	Command understood but currently not executable (device is currently executing another command, e.g. taring, or timeout as stability was not reached).
S_L	Command understood but not executable (incorrect parameter).
S_+	Device in overload range.
S	Device in underload range.
S_S_ <i>«ErrorCode»</i>	Code of error occurred

Parameters / Return values

Name	Туре	Values	Meaning
WeightValue	float		Weight value
Unit	string		Currently displayed unit
ErrorCode	string		Code of error occurred

Comments

- •
- The duration of the timeout depends on the device type. The weight value is formatted as a right aligned string with 10 characters including the decimal • point.

1	S	Send a stable weight value
1	S_S100.00_g	The current, stable ("S") weight value is 100.00 g

SI - Send weight value immediately

Description

Use sI to immediately send the current weight value, along with the unit.

Syntax

Command

SI	Send the current net weight value, irrespective of device stability.
----	--

Responses

S_S_ <i>«WeightValue»_«Unit»</i>	Stable weight value in unit set
S_D_ <i>«WeightValue»_«Unit»</i>	Non-stable (dynamic) weight value in unit set
S_I	Command understood but currently not executable (device is currently executing another command, e.g. taring).
S_L	Command understood but not executable (incorrect parameter).
S_+	Device in overload range.
S	Device in underload range.
S_S_ <i>«ErrorCode»</i>	Code of error occurred

Parameters / Return values

Name	Туре	Values	Meaning
WeightValue	float		Weight value
Unit	string		Currently displayed unit
ErrorCode	string		Code of error occurred

Comments

- The device response to the command **si** is the last internal weight value (stable or dynamic) before receipt of the command **si**.
- The weight value is formatted as a right aligned string with 10 characters including the decimal point.

1	SI	Send current weight value
1	S_D129.07_g	The weight value is unstable (dynamic, "D") and is currently 129.07 g

Use **SIR** to immediately send the current weight value, along with the unit, on a continuous basis.

Syntax

Command

Send the net weight values repeatedly, irrespective of device stability.
or device stability.

Responses

S_S_«WeightValue»_«Unit»	Stable weight value in unit set
S_D_ <i>«WeightValue»_«Unit»</i>	Non-stable (dynamic) weight value in unit set
S_I	Command understood but currently not executable (device is currently executing another command, e.g. taring).
S_L	Command understood but not executable (incorrect parameter).
S_+	Device in overload range.
S	Device in underload range.
S_S_ <i>«ErrorCode»</i>	Code of error occurred

Parameters / Return values

Name	Туре	Values	Meaning
WeightValue	float		Weight value
Unit	string		Currently displayed unit
ErrorCode	string		Code of error occurred

Comments

- SIR is overwritten by the commands S, SI, @ and hardware break and hence cancelled.
- The weight value is formatted as a right aligned string with 10 characters including the decimal point.

1	SIR	Send current weight values at intervals
1	S_D129.07_g	The device sends stable ("S") or unstable ("D")
1	S_D129.08_g	weight values at intervals
1	S_S129.09_g	
1	S_S129.09_g	
1	S_D129.87_g	
↑	S	

Use z to set a new zero; all weight values (including the tare weight) will be measured relative to this zero. After zeroing has taken place, the following values apply: tare weight = 0; net weight (= gross weight) = 0.

Syntax

Command

Ζ	Zero the device.	
Responses		

Z_A	Zero setting successfully performed. Gross, net and tare = 0 .
Z_I	Command understood but currently not executable (device is currently executing another command, e.g. taring, or timeout as stability was not reached).
Z_+	Upper limit of zero setting range exceeded.
Z	Lower limit of zero setting range exceeded.

Comments

- The tare memory is cleared after zero setting.
- The zero point determined during switching on is not influenced by this command, the measurement ranges remain unchanged.
- The duration of the timeout depends on the device type.

$\mathbf{+}$	Z	Zero
↑	Z_A	Zero setting performed

Use zi to set a new zero immediately, regardless of device stability. All weight values (including the tare weight) will be measured relative to this zero. After zeroing has taken place, the following values apply: tare weight = 0; net weight (= gross weight) = 0.

Syntax

Command

ZI	Zero the device immediately regardless the
	stability of device

Responses

ZI_D	Re-zero performed under non-stable (dynamic) conditions.
ZI_S	Re-zero performed under stable conditions.
ZI_I	Command understood but currently not executable (device is currently executing another command, e.g. taring).
ZI_+	Upper limit of zero setting range exceeded.
ZI	Lower limit of zero setting range exceeded.

Comments

- The tare memory is cleared after zero setting.
- This command is not supported by approved devices.
- The zero point determined during switching on is not influenced by this command, the measurement ranges remain unchanged.

¥	ZI	Zero immediately
1	ZI_D	Re-zero performed under non-stable (dynamic) conditions

4 KCP commands - Level 1 (basic measurement)

The commands from Level 1 are available for all basic weighing instruments.

- D Display: Write text to display
- DW Display: Show weight
- κ Keys: Set configuration
- SR Send weight value on weight change (send and repeat)
- т Tare
- TA Query/preset tare weight value
- TAC Clear tare value
- TI Tare immediately

Use D to write text to the device display.

Syntax

Command

D_"«DisplayText»"	Write text into the device display.

Responses

D_A	Command understood and executed successfully: Text appears left-aligned in the device display marked by a symbol, e.g. *.
D_I	Command understood but currently not executable.
D_L	Command understood but not executable (incorrect parameter or device with no display).

Parameters / Return values

Name	Туре	Values	Meaning
DisplayText	string		Text on the device display

Comments

- A symbol in the display, e.g. * indicates that the device is not displaying a weight value.
- The maximum number of characters of "text" visible in the display depends on the device type. If the maximum number of characters is exceeded, the text disappears on the right side.
- Quotation marks can be displayed as indicated in chapter [2.5.1]

Examples

Ť	D_"HELLO"	Write "HELLO" into the device display
1	D_A	The full text HELLO appears in the device display

¥	D_″″	Clear the device display
↑	D_A	Device display cleared, marked by a symbol, e.g. *

See also

→ Dw – Display: Show weight

Writes the current weight value to the device display using the set unit. This command is used to reset the display after using the D command.

Syntax

Command

DW	Switch the main display to weight mode.	
Responses		
DW_A	Command understood and executed successfully: Main display shows the current weight value.	
DW_I	Command understood but currently not executable.	

Comments

• DW resets the device display following a [D] command.

Examples

↓	DW	Switch the main display to weight mode
↑	DW_A	Main display shows the current weight value

See also

With the κ command, the behavior of the terminal keys may be configured: first, the κ command controls whether a key invokes its corresponding function or not and second, it configures whether an indication of which key has been pressed or released is sent to the host interface or not.

Using this functionality, an application running on a connected system (e.g. a PC or PLC) may make use of the device terminal to interact with the device operator.

Syntax

Command

K_ <i>«Mode»</i>	Set configuration.	

Responses

K_A[_ <i>«FunctionID»</i>]	Command understood and executed successfully.	
	Mode 4: Function with <i>«FunctionID»</i> was	
	invoked by pressing the corresponding key and executed successfully.	
K_I[_ <i>«FunctionID»</i>]	Command understood but currently not executable (device is actually	
	in menu or input mode).	
	Mode 4: Function with <i>«FunctionID»</i> by pressing the corresponding	
	key, but it could not be successfully executed (e.g. calibration was	
	aborted by user or a negative value was tared).	
K_L	Command understood but not executable (incorrect	
	or no parameter).	

Additional Responses in Mode 3:

K_«EventID»_«KeyID»	Key «KeyID» has issued an «EventID».
Additional Bosnancos in Made 4	

Additional Responses in Mode 4:

K_B_ <i>«FunctionID»</i>	Function with <i>«FunctionID»</i> was invoked and
	started; the execution needs time to complete.

Parameters / Return values

Name	Туре	Values	Meaning
Mode	integer	1	Functions are executed, no indications are sent
	_		(factory setting)
		2	Functions are not executed, no indications are sent
		3	Functions are not executed, indications are sent
		4	Functions are executed, indications are sent
EventID	char	R	Key was pressed and held around 2 seconds
		С	Key was released(after being pressed shortly or for
			2 second)
FunctionID	integer	0	Adjustment
		1	Tare
		2	Zero
		3	Data transfer to printing device
		4 6	Reserved for future use
		7	Test
KeyID	integer	1	Home
		2	User profile
		3	Settings
		5	Zero
		7	Transfer
		8	Configure actual applications
		9	Applications

Comments

- K_1 is the factory setting (default value).
- K_1 active after device switched on and after the cancel command [0].
- Only one K mode is active at one time.

Examples

When a code with a long press is sent, new key commands will not be accepted.

¥	K_4	Set mode 4: when a key is pressed, execute the corresponding function and send the function number as a response
1	K_A	Command executed successfully
1	K_B_1	The taring function has been started \rightarrow taring active
1	K_A_1	Taring completed successfully
1	K_B_1	The taring function has been started \rightarrow taring active
1	K_I_1	Taring not completed successfully, taring aborted (e.g. tried to tare a negative value)

Use **sr** to send the current weight values following a predefined minimum change in weight and on a continuous basis. The weight value is sent, along with the unit.

Command

SR	Send the current stable weight value and then con- tinuously after every weight change. If no preset value is entered, the weight change must be at least 12.5% of the last stable weight value, mini- mum = 30 digit.
SR_«PresentValue»_«Unit»	Send the current stable weight value and then con- tinuously after every weight change greater or equal to the preset value a non-stable (dynamic) value followed by the next stable value, range = 1 digit to maximal capacity.

Responses

S_S_«WeightValue»_«Unit»	Current, stable weight value in unit set, 1 st weight change.
S_D_ <i>«WeightValue»_«Unit»</i>	Dynamic weight value in unit set.
S_S_«WeightValue»_«Unit»	Next stable weight value in unit set.
S_I	Command understood but currently not executable (device is currently executing another command, e.g. zero setting, or timeout as stability was not reached).
S_L	Command understood but not executable (incorrect parameter).
S_+	Device in overload range.
S	Device in underload range.
S_S_ <i>«ErrorCode»</i>	Code of error occurred

Parameters / Return values

Name	Туре	Values	Meaning
WeightValue	float		Weight value
Unit	string		Unit, only available units permitted
ErrorCode	string		Code of error occurred

Comments

- SR is overwritten by the commands S, SI, @ and hardware break and hence cancelled.
- If, following a non-stable (dynamic) weight value, stability has not been reached within the timeout interval, the response S_I is sent and then a non-stable weight value. Timeout then starts again from the beginning.
- The preset value can be entered in any by the device accepted unit.
- The weight value is formatted as a right aligned string with 10 characters including the decimal point.

Examples

¥	SR_10.00_g	Send the current stable weight value followed by every load change of 10 g
↑	S_S100.00_g	Device stable
1	S_D115.23_g	100.00 g loaded
1	S_S200.00_g	Device again stable

See also

→	S - Send stable weight value
♦	SI - Send weight value immediately
♦	SIR - Send weight value immediately and repeat

Use \mathbf{T} to tare the device. The next stable weight value will be saved in the tare memory.

Command

Т	Tare, i.e. store the next stable weight value as a
	new tare weight value.

Responses

T_S_ <i>«TareWeightValue»</i> _ <i>«Unit»</i>	Taring successfully performed. The tare weight value returned corresponds to the weight change on the device in the unit set since the last zero setting.
T_I	Command understood but currently not executable (device is currently executing another command, e.g. zero setting, or timeout as stability was not reached).
T_L	Command understood but not executable (incorrect parameter).
T_+	Upper limit of taring range exceeded.
т	Lower limit of taring range exceeded.

Parameters / Return values

Name	Туре	Values	Meaning
WeightValue	float		Weight value
Unit	string		Currently displayed unit

Comments

- The tare memory is overwritten by the new tare weight value.
- The duration of the timeout depends on the device type.
- Clearing tare memory: See **TAC**.
- The weight value is formatted as a right aligned string with 10 characters including the decimal point.

Examples

	ł	Т	Tare
F	≯	T_S100.00_g	The device is tared and has a value of 100.00 g
			in the tare memory

See also

→	TAC - Clear	are value	

Use TA to query the current tare value or preset a known tare value.

Command

ТА	Query of the current tare weight value.
TA_ <i>«TarePresentValue»_«Unit»</i>	Preset of a tare value.

Responses

TA_A_ <i>«TareWeightValue»_«Unit»</i>	Query current tare weight value in tare memory, in unit set.
TA_I	Command understood but currently not executable (device is currently executing another command, e.g. zero setting, or timeout as stability was not reached).
TA_L	Command understood but not executable (incorrect parameter).

Parameters / Return values

Name	Туре	Values	Meaning
TareWeightValue	float		Tare Weight value
Unit	string		Currently displayed unit

Comments

- The tare memory will be overwritten by the preset tare weight value.
- The inputted tare value will be automatically rounded by the device to the current readability.
- The taring range is specified to the device type.
- The weight value is formatted as a right aligned string with 10 characters including the decimal point.

Examples

$\mathbf{+}$	TA_100.00_g	Preset a tare weight of 100 g				
↑	TA_A100.00_g	The device has a value of 100.00 g in the tare				
		memory				

See also

→ TAC - Clear tare value

Use **TAC** to clear the tare memory.

Command

TAC	Clear tare value.

Responses

TAC_A	Tare value cleared, 0 is in the tare memory.
TAC_I	Command understood but currently not executable (device is currently executing another command, e.g. zero setting).
TAC_L	Command understood but not executable (incorrect parameter).

Examples

$\mathbf{+}$	TAC	Clear tare value
↑	TAC_A	are value cleared, o is in the tare memory

See also

→	T - Tare
→	TI - Tare immediately
→	TA - Query/preset tare weight value
→	TC - Tare or tare immediately after timeout

TI – Tare immediately

Description

Use **TI** to tare the device immediately and independently of device stability.

Command

TI	Tare immediately, i.e. store the current weight value, which can be stable or non stable (dynamic),
	as are weight value.

Responses

TI_S_ <i>«TareWeightValue»_«Unit»</i>	Taring performed, stable tare value. The new tare value corresponds to the weight change on the device since the last zero setting.			
TI_D_ <i>«TareWeightValue»_«Unit»</i>	Taring performed, non-stable (dynamic) tare value.			
TI_I	Command understood but currently not executable (device is currently executing another command, e.g. zero setting).			
TI_L	Command understood but not executable (e.g. certified version of the device).			
TI_+	Upper limit of taring range exceeded.			
TI	Lower limit of taring range exceeded.			

Parameters / Return values

Name	Туре	Values Meaning		
TareWeightValue	float		Tare Weight value	
Unit	string		Currently displayed unit	

Comments

- The tare memory will be overwritten by the new tare weight value.
- After a non-stable (dynamic) stored tare weight value, a stable weight value can be determined. However, the absolute value of the stable weight value determined in this manner is not accurate.
- The taring range is specified to the device type.
- The weight value is formatted as a right aligned string with 10 characters including the decimal point.
- The stored tare weight value is sent in the unit set

Examples

$\mathbf{+}$	TI Tare immediately				
1	TI_D117.57_g	The tare memory holds a non-stable (dynamic) weight value			

See also

→	TAC -	Clear	tare	value	
---	-------	-------	------	-------	--

English

5 Command index

	·					TA TAC	29 30
@		1		S		TI	31
@	9	10	10	S	5, 16		
		11	11	SI	5, 17	U	
		12	12	SIM	5		
D		13	13	SIR	18	U	5
		14	14	SMEM	5		
D	22	15	15	SR	26		
DW	23					Ζ	
		К		Τ		Z	5, 19
						ZI	20
		К	24	т	28		

This page lists all the page numbers, relevant information to a command can be found.